
STAMFORD°

LV 804 W WDG 12 - Technical Data Sheet

FRAME LV 804 W SPECIFICATIONS & OPTIONS

STANDARDS

STAMFORD AC generators are designed to meet the performance requirements of IEC EN 60034-1. Other international standards, including BS5000, VDE 0530, NEMA MG1-32, AS1359, CSA C22.2, UL and CE; as well as a wide range of international Marine Certification Approvals, can be met on request. For clarification regarding compliance please contact Cummins Generator Technologies.

DESCRIPTION

The STAMFORD PI range of synchronous ac generators are brushless with a rotating field. They are separately excited by the STAMFORD Permanent Magnet Generator (PMG). This is a shaft mounted, high frequency, pilot exciter which provides a constant supply of clean power via the Automatic Voltage Regulator (AVR) to the main exciter. The main exciter output is fed to the main rotor, through a full wave bridge rectifier, protected by surge suppression.

VOLTAGE REGULATORS

settable level.

The P range generators complete with a PMG are available with an analogue AVR as standard. The AVR has soft start voltage build up and built in protection against sustained over-excitation, which will de-excite the generator after a minimum of 8 seconds. Underspeed protection (UFRO) is also provided on both AVRs. The UFRO will reduce the generator output voltage proportional to the speed of the generator below a pre-

The MA330 AVR is full wave rectified, 3 phase rms sensed with a voltage regulation of 0.5% rms (see the note on regulation). The UFRO circuit has adjustable slope and dwell for controlled recovery from step loads. An over voltage protection circuit will shutdown the output device of the AVR, it can also trip an optional excitation circuit breaker if required. As an option, short circuit current limiting is available with the addition of current transformers.

The MA330 AVR needs a generator mounted current transformer to provide quadrature droop characteristics for load sharing during parallel operation. Provision is also made for the connection of the STAMFORD power factor controller, for embedded applications, and a remote voltage trimmer.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low levels of voltage waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators feature a main stator with 6 ends brought out to the terminals, which are mounted on the frame at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

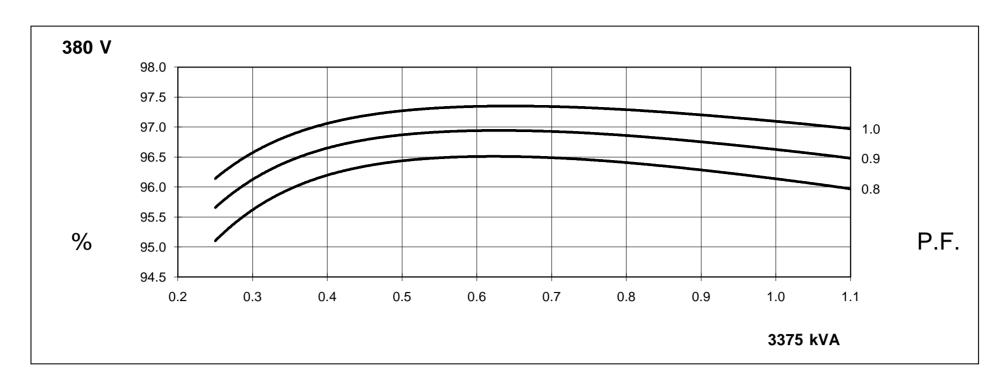
Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

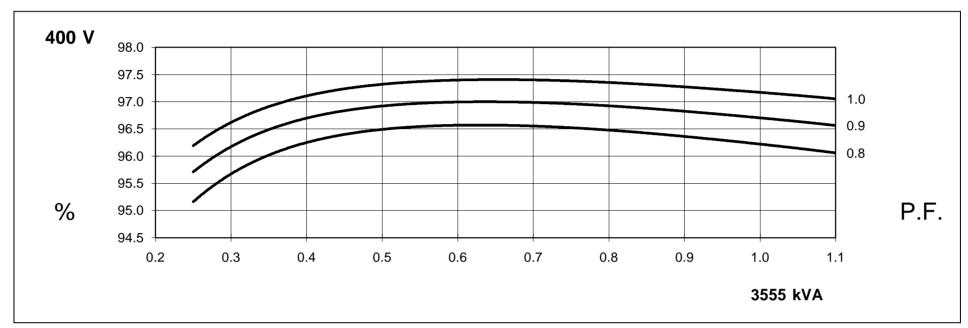
NOTE ON REGULATION

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

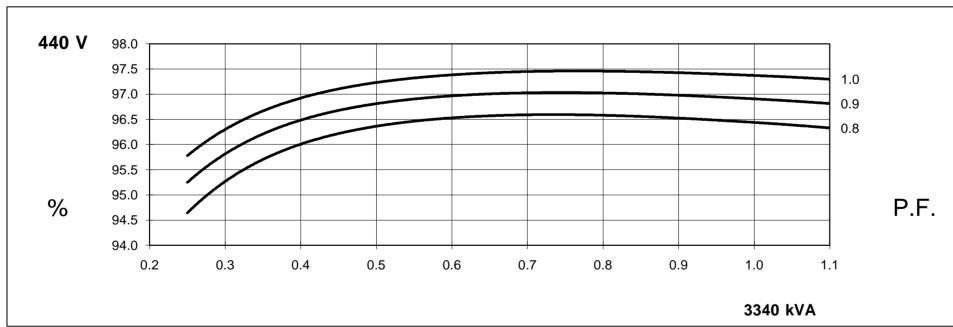
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

Front cover drawing is typical of the product range.

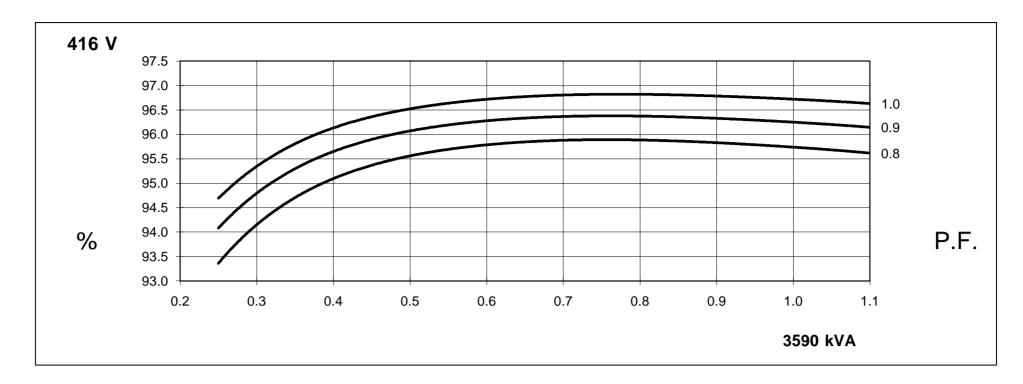


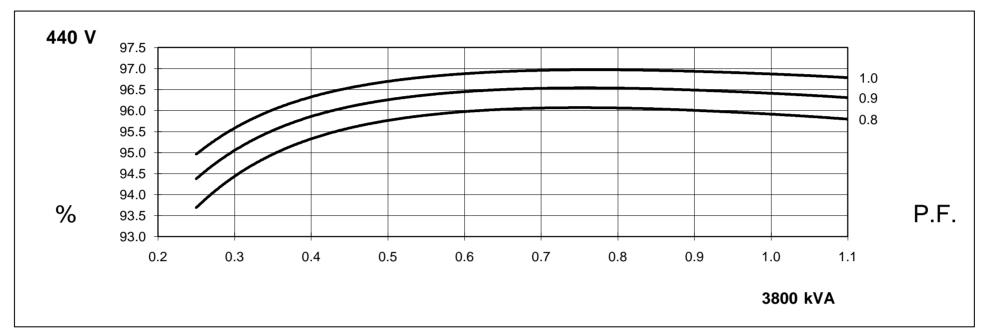

FRAME LV 804 W WINDING 12

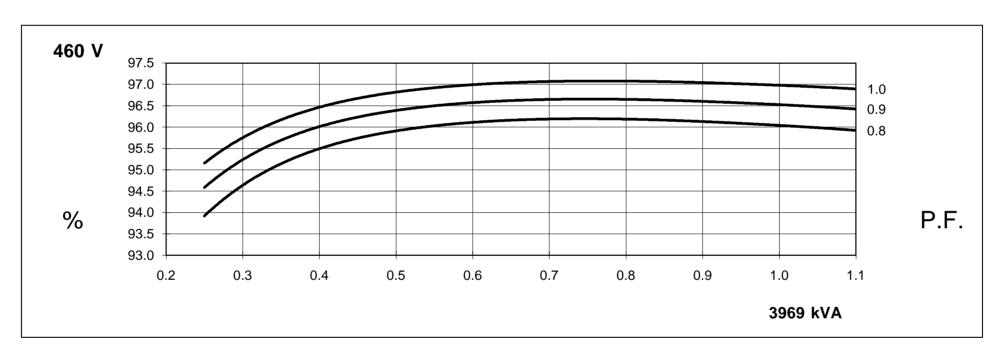
	T		0=0\"0= 0									
RATINGS			SERVICE BI	RIEFING								
MAXIMUM ALTITUDE		ES ABOVE S	SEA LEVEL									
MAXIMUM AMBIENT TEMPERATURE	40° C											
CONTROL SYSTEM SERIES 3	SEPARATE	LY EXCITED	BY P.M.G.									
A.V.R.	FULL WAVI	RECTIFIED)									
VOLTAGE REGULATION	± 0.5%	± 0.5% WITH 4% ENGINE GOVERNING										
SUSTAINED SHORT CIRCUIT	REFER TO	SHORT CIR	CUIT DECRE	MENT CURV	ES OF THIS	SECTION						
INSULATION SYSTEM	CLASS H											
PROTECTION	IP23 STANDARD											
RATED POWER FACTOR		IP23 STANDARD 0.8										
STATOR WINDING					LAYER LAP							
WINDING PITCH					2/3							
WINDING FITCH WINDING LEADS					6							
R.F.I. SUPPRESSION	BC	EN 50091/2	1/2 VDE 093	75C VDE 09		r etandarde d	apply to the fa	ctory				
WAVEFORM DISTORTION	1 53			N-DISTORTIN			• • •	ctory				
MAXIMUM OVERSPEED	+	NO LOAD	< 1.5% NOI		Rev/Min	D LINEAR L	OAD < 3.0%					
BEARING DRIVE END					236 C3							
BEARING NON DRIVE END EFFICIENCY	ISO 6324 C3											
EFFICIENCY	REFER TO EFFICIENCY CURVES OF THIS SECTION											
FREQUENCY			Hz		60Hz							
TELEPHONE INTERFERENCE			< 2%		TIF<50							
COOLING AIR			m ³ /sec		4.5 m ³ /sec							
VOLTAGE STAR (Y)	380	400	415	440	416	440	460	480				
kVA BASE RATING FOR	3375	3555	3555	3340	3590	3800	3969	4142				
REACTANCE VALUES												
Xd DIRECT AXIS SYNCHRONOUS	2.95	2.80	2.60	2.17	3.12	2.95	2.82	2.70				
X'd DIRECT AXIS TRANSIENT	0.206	0.196	0.182	0.152	0.220	0.208	0.199	0.191				
X"d DIRECT AXIS SUB-TRANSIENT	0.151	0.144	0.134	0.112	0.161	0.152	0.146	0.140				
Xq QUADRATURE AXIS REACTANCE	1.96	1.86	1.73	1.44	2.08	1.97	1.88	1.80				
X"q QUAD. AXIS SUB-TRANSIENT	0.284	0.270	0.251	0.210	0.302	0.286	0.273	0.262				
XL LEAKAGE REACTANCE	0.088	0.084	0.078	0.065	0.093	0.088	0.085	0.081				
X ₂ NEGATIVE PHASE SEQUENCE	0.219	0.208	0.193	0.162	0.233	0.221	0.211	0.202				
X ₀ ZERO PHASE SEQUENCE	0.029	0.028	0.026	0.022	0.031	0.029	0.028	0.027				
REACTANCES ARE SATURATED	VALUES	ARE PER U	NIT AT RATI	NG AND VOL	TAGE INDIC	CATED TO IE	C60034 TOLE	ERENCES				
T'd TRANSIENT TIME CONSTANT	0.208											
T"d SUB-TRANSIENT TIME CONSTANT	0.016											
T'do O.C. FIELD TIME CONSTANT		5.000										
Ta ARMATURE TIME CONSTANT				0.	083							
SHORT CIRCUIT RATIO				1.	/Xd							
STATOR WINDING RESISTANCE (L-N)				0.00	00330							
ROTOR WINDING RESISTANCE					470							
EXCITER STATOR FIELD RESISTANCE					7.00							
EXCITER ROTOR RESISTANCE (L-L)					092							
PMG STATOR RESISTANCE (L-L)					800							
			RESISTAN	NCE VALUES		MS AT 20° C						
NO LOAD EVOITATION CONTRACTOR		·										
NO LOAD EXCITATION VOLTAGE	+				5.0							
FULL LOAD EXCITAION VOLTAGE	67.0											

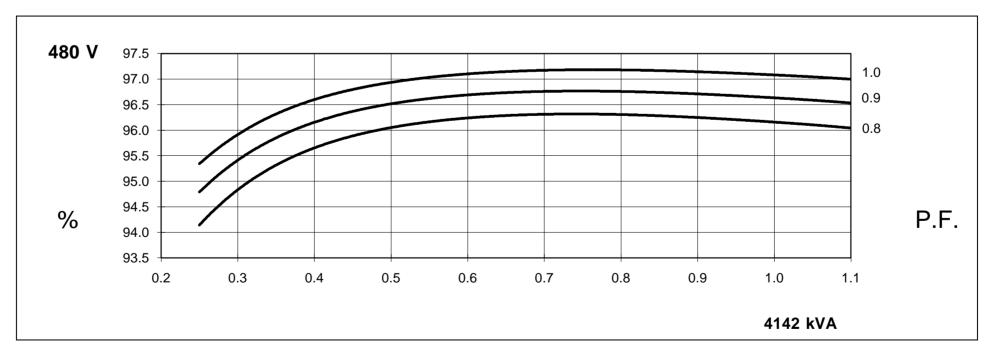

Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

THREE PHASE EFFICIENCY CURVES

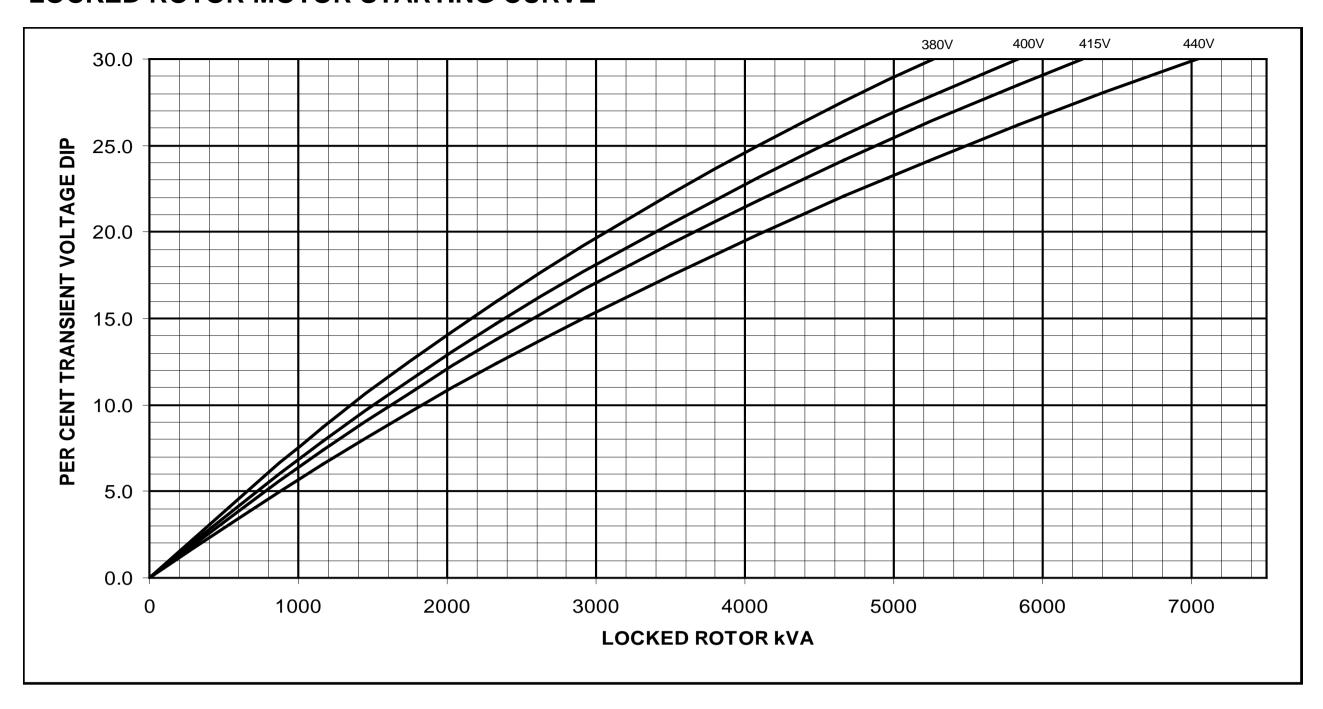


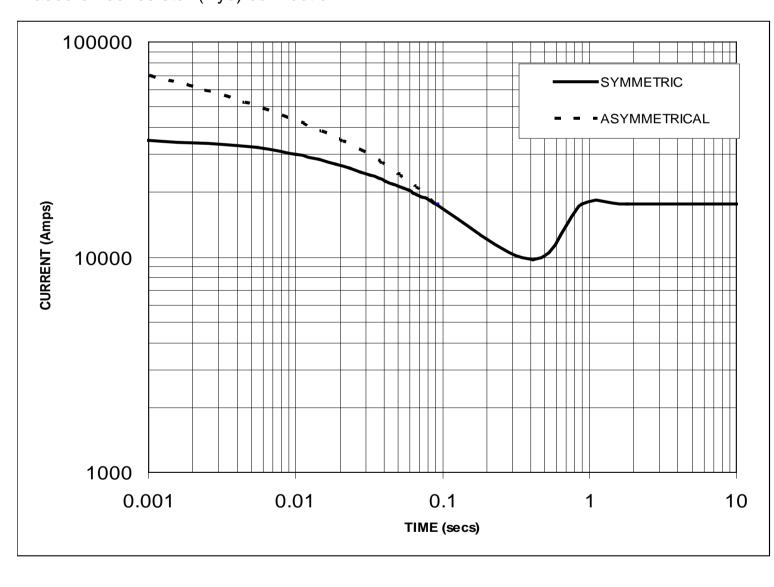






THREE PHASE EFFICIENCY CURVES




FULL WAVE RECTIFIED AVR LOCKED ROTOR MOTOR STARTING CURVE

FRAME LV 804 W WDG 12 50Hz

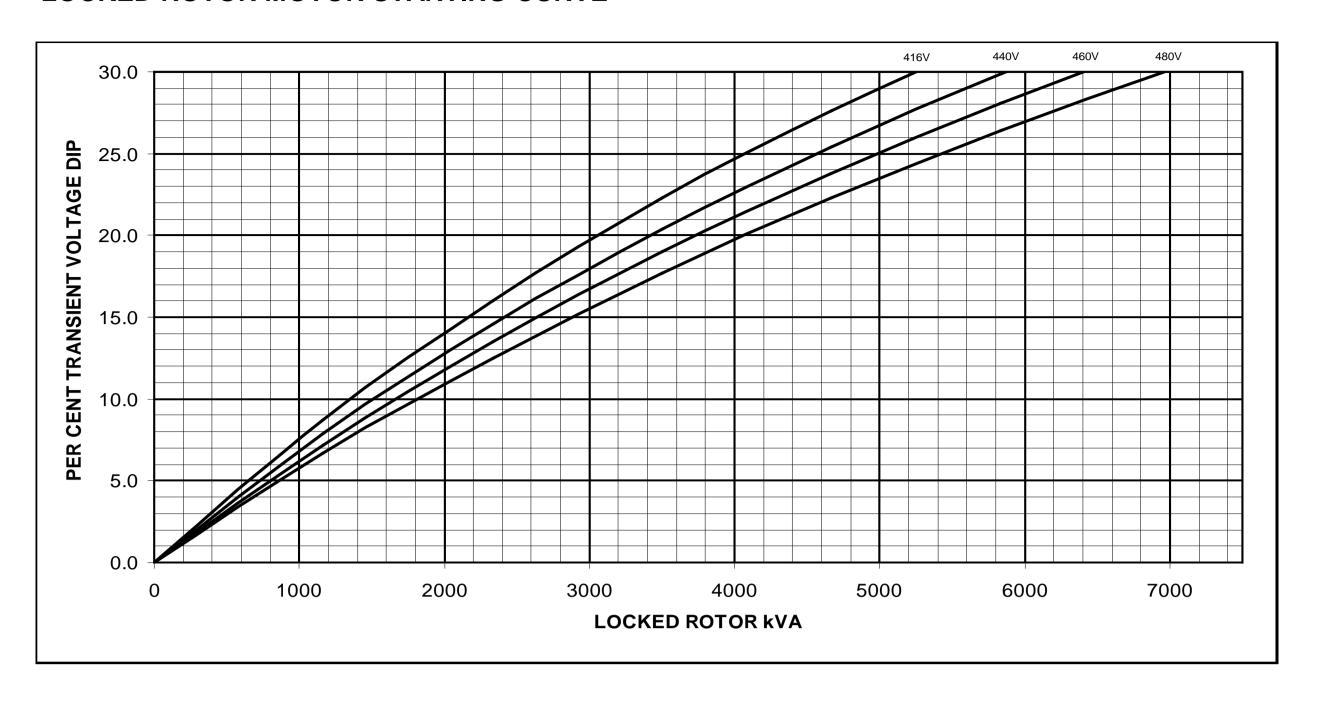
Three Phase Short Circuit Decrement Curve No- Load Excitation at Rated Speed

Based on series star (wye) connection

THE FOLLOWING MULTIPLICATION FACTORS SHOULD BE USED TO ADJUST THE VALUES FROM CURVES BETWEEN THE 0.001 SECONDS AND THE MINIMUM CURRENT POINT IN

FACTOR
X 0.95
X 1.00
X 1.04
X1.10

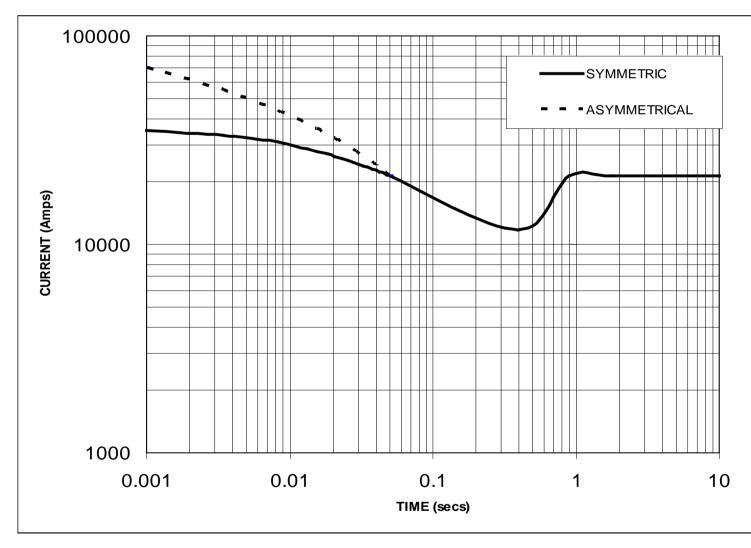
THE SUSTAINED CURRENT VALUE IS CONSTANT IRRESPECTIVE OF VOLTAGE LEVEL


NOTE 2

THE FOLLOWING MULTIPLICATION FACTORS SHOULD BE USED TO CONVERT THE VALUES CALCULATED IN ACCORDANCE WITH NOTE 1 TO THOSE APPLICABLE TO THE VARIOUS TYPES OF SHORT CIRCUIT

	3 PHASE	2 PHASE L-L	1 PHASE L-N
INSTANTANEOUS	X 1.0	X 0.87	X 1.30
MINIMUM	X 1.0	X 1.80	X 3.20
SUSTAINED	X 1.0	X 1.50	X 2.50
MAX SUSTAINED DURATION	10 SEC	5 SEC	2 SEC
ALL OTHER TIMES ARE UNCHANGED			

SUSTAINED SHORT CIRCUIT = 17703 Amps


FULL WAVE RECTIFIED AVR LOCKED ROTOR MOTOR STARTING CURVE

FRAME LV 804 W WDG 12 60Hz

Three Phase Short Circuit Decrement Curve No- Load Excitation at Rated Speed

Based on series star (wye) connection

NOTE 1

THE FOLLOWING MULTIPLICATION FACTORS SHOULD BE USED TO ADJUST THE VALUES FROM CURVES BETWEEN THE 0.001 SECONDS AND THE MINIMUM CURRENT POINT IN RESPECT OF NOMINAL OPERATING VOLTAGE

VOLTAGE	FACTOR
416V	X 0.87
440V	X 0.92
460V	X0.96
480V	X1.00

THE SUSTAINED CURRENT VALUE IS CONSTANT IRRESPECTIVE OF VOLTAGE LEVEL

NOTE 2

THE FOLLOWING MULTIPLICATION FACTORS SHOULD BE USED TO CONVERT THE VALUES CALCULATED IN ACCORDANCE WITH NOTE 1 TO THOSE APPLICABLE TO THE VARIOUS TYPES OF SHORT CIRCUIT

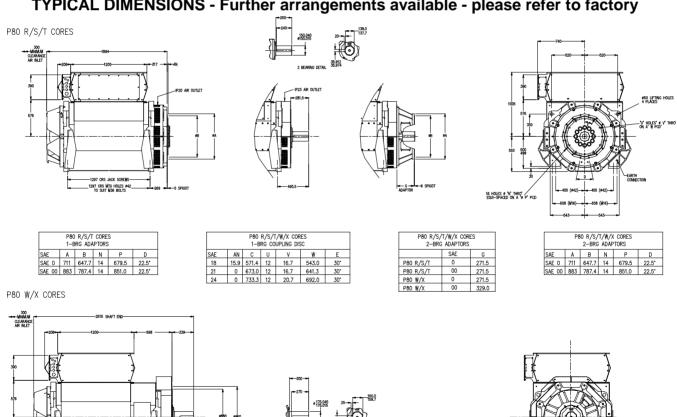
	3 PHASE	2 PHASE L-L	1 PHASE L-N
INSTANTANEOUS	X 1.0	X 0.87	X 1.30
MINIMUM	X 1.0	X 1.80	X 3.20
SUSTAINED	X 1.0	X 1.50	X 2.50
MAX SUSTAINED DURATION	10 SEC	5 SEC	2 SEC
ALL OTHER TIMES ARE UNCHANGED			

SUSTAINED SHORT CIRCUIT = 21423 Amps

FRAME LV 804 W

STAMFORD

WINDING 12


0.8 Power Factor

RATINGS

Class - Temp Rise Cont. F - 105/40°C			Co	ont. H -	125/40	°C	St	andby -	150/40	°C	Standby - 163/27°C						
50 Hz	Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
	kVA	3155	3322	3322	3122	3375	3555	3555	3340	3610	3800	3800	3570	3715	3910	3910	3675
	kW	2524	2658	2658	2498	2700	2844	2844	2672	2888	3040	3040	2856	2972	3128	3128	2940
Effi	ciency (%)	96.2	96.3	96.4	96.5	96.1	96.2	96.3	96.4	96.0	96.1	96.2	96.4	96.0	96.1	96.2	96.3
	kW Input	2624	2760	2758	2589	2809	2956	2953	2771	3008	3163	3160	2964	3097	3256	3252	3052
00::	0: 00		440	100	100	110	440	400	100	440	110	400	100	110	110	100	400

60 Hz	Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
	kVA	3350	3550	3710	3871	3590	3800	3969	4142	3840	4060	4245	4430	3940	4170	4360	4550
	kW	2680	2840	2968	3097	2872	3040	3175	3314	3072	3248	3396	3544	3152	3336	3488	3640
Effic	ciency (%)	95.8	96.0	96.1	96.2	95.7	95.9	96.0	96.2	95.7	95.8	96.0	96.1	95.6	95.8	95.9	96.1
	kW Input	2798	2960	3089	3219	3000	3169	3306	3446	3212	3389	3539	3689	3296	3482	3636	3790

TYPICAL DIMENSIONS - Further arrangements available - please refer to factory

STAMFORD

16 HOLES W16 x 32 DEEP EQUI-SPACED ON AN 880 P.C.D.

Barnack Road • Stamford • Lincolnshire • PE9 2NB Tel: 00 44 (0)1780 484000 • Fax: 00 44 (0)1780 484100

© 2009 TD_LV804.12.GB_03.09_09_GB

_1612 ORS MTG HOLES #42 TO SUIT M36 BOLTS